小学奥数知识点趣味学习——走走停停问题(11)_公式库网

数学评论1

 

 文章源自公式库网-https://www.gongshiku.com/html/201907/1989f5965b.html

走走停停的要点及解题技巧
 文章源自公式库网-https://www.gongshiku.com/html/201907/1989f5965b.html
1、行程问题里走走停停的题目应该怎么做文章源自公式库网-https://www.gongshiku.com/html/201907/1989f5965b.html
1.画出速度和路程的图。文章源自公式库网-https://www.gongshiku.com/html/201907/1989f5965b.html

2.要学会读图。文章源自公式库网-https://www.gongshiku.com/html/201907/1989f5965b.html

3.每一个加速减速、匀速要分清楚,这有利于你的解题思路。文章源自公式库网-https://www.gongshiku.com/html/201907/1989f5965b.html

4.要注意每一个行程之间的联系。文章源自公式库网-https://www.gongshiku.com/html/201907/1989f5965b.html

小学奥数知识点趣味学习——走走停停问题(11)_公式库网文章源自公式库网-https://www.gongshiku.com/html/201907/1989f5965b.html
2、学好行程问题的要诀文章源自公式库网-https://www.gongshiku.com/html/201907/1989f5965b.html
行程问题可以说是难度最大的奥数专题。
类型多:行程分类细,变化多,工程抓住工作效率和比例关系,而行程每个类型重点不一,因此没有一个关键点可以抓
题目难:理解题目、动态演绎推理——静态知识容易学,动态分析需要较高的理解能力、逻辑分析和概括能力
跨度大:从三年级到六年级都要学行程——四年的跨度,需要不断的复习巩固来加深理解、夯实基础文章源自公式库网-https://www.gongshiku.com/html/201907/1989f5965b.html
小学奥数知识点趣味学习——走走停停问题(11)_公式库网

那么想要学好行程问题,需要掌握哪些要诀呢?

要诀一:大部分题目有规律可依,要诀是"学透"基本公式
要诀二:无规律的题目有"攻略",一画(画图法)二抓(比例法、方程法)

 

【例1】

甲乙两人同时从一条800环形跑道同向行驶,甲100米/分,乙80米/分,两人每跑200米休息1分钟,甲需多久第一次追上乙?

 

【解答】

这样的题有三种情况:在乙休息结束时被追上、在休息过程中被追上和在行进中被追上。很显然首先考虑在休息结束时的时间最少,如果不行再考虑在休息过程中被追上,最后考虑行进中被追上。其中在休息结束时或者休息过程中被追上的情况必须考虑是否是在休息点追上的。

 

由此首先考虑休息800÷200-1=3分钟的情况。甲就要比乙多休息3分钟,就相当于甲要追乙800+80×3=1040米,需要1040÷(100-80)=52分钟,52分钟甲行了52×100=5200米,刚好是在休息点追上的满足条件。行5200米要休息5200÷200-1=25分钟。

因此甲需要52+25=77分钟第一次追上乙。

 

【例2】

在400米环形跑道上,A、B两点的跑道相距200米,甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步,甲每秒跑7米,乙每秒跑5米,他们每人跑100米都停5秒.那么,甲追上乙需要多少秒?

 

【解答】这是传说中的“走走停停”的行程问题。

这里分三种情况讨论休息的时间,第一、如果在行进中追上,甲比乙多休息10秒,第二,如果在乙休息结束的时候追上,甲比乙多休息5秒,第三,如果在休息过程中且又没有休息结束,那么甲比乙多休息的时间,就在这5~10秒之间。显然我们考虑的顺序是首先看是否在结束时追上,又是否在休息中追上,最后考虑在行进中追上。

 

有了以上的分析,我们就可以来解答这个题了。我们假设在同一个地点,甲比乙晚出发的时间在200/7+5=235/7和200/7+10=270/7的之间,在以后的行程中,甲就要比乙少用这么多时间,由于甲行100米比乙少用100/5-100/7=40/7秒。

 

继续讨论,因为270/7÷40/7不是整数,说明第一次追上不是在乙休息结束的时候追上的。因为在这个范围内有240/7÷40/7=6是整数,说明在乙休息的中追上的。即甲共行了6×100+200=800米,休息了7次,计算出时间就是800/7+7×5=149又2/7秒。

 

注:这种方法不适于休息点不同的题,具有片面性。

 

【例3】

在400米环形跑道上,A、B两点的跑道相距200米,甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步,甲每秒跑7米,乙每秒跑5米,他们每人跑100米都停5秒.那么,甲追上乙需要多少秒?

 

【解答】

这里分三种情况讨论休息的时间,第一、如果在行进中追上,甲比乙多休息10秒,第二,如果在乙休息结束的时候追上,甲比乙多休息5秒,第三,如果在休息过程中且又没有休息结束,那么甲比乙多休息的时间,就在这5~10秒之间。显然我们考虑的顺序是首先看是否在结束时追上,又是否在休息中追上,最后考虑在行进中追上。

 

有了以上的分析,我们就可以来解答这个题了。我们假设在同一个地点,甲比乙晚出发的时间在200/7+5=235/7和200/7+10=270/7的之间,在以后的行程中,甲就要比乙少用这么多时间,由于甲行100米比乙少用100/5-100/7=40/7秒。

 

继续讨论,因为270/7÷40/7不是整数,说明第一次追上不是在乙休息结束的时候追上的。因为在这个范围内有240/7÷40/7=6是整数,说明在乙休息的中追上的。即甲共行了6×100+200=800米,休息了7次,计算出时间就是800/7+7×5=149又2/7秒。

 

 

运营不易,
感谢支持!
weinxin
我的微信
我的微信公众号
我的微信公众号扫一扫
weinxin
我的公众号
 最后更新:2020-5-20
公式库网
  • 本文由 公式库网 发表于 2019年7月15日07:22:53
  • 转载请务必保留本文链接:https://www.gongshiku.com/html/201907/1989f5965b.html

发表评论